New sites of two Cr^{3+} EPR centres in KTiOPO_{4} single crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys.: Condens. Matter 7667
(http://iopscience.iop.org/0953-8984/7/3/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.179
The article was downloaded on 13/05/2010 at 11:46

Please note that terms and conditions apply.

New sites of two $\mathbf{C r}^{3}{ }^{3}$ EPr centres in KTiOPO_{4} single crystals

Sang Won Ahn \dagger, Sung Ho Choh \dagger and Jung Nam Kini \ddagger
\dagger Departrmient of Physics, Korea University, Seoul 136-701, Körea
\ddagger Dèpaitmènt of Physicss, Pusän National Universisity. Puşan 609-735, Kótèa

Received 24 August 1994, in final form 12 Óctober 1994

Abstract

R spectía of $\mathrm{C}^{3}{ }^{3-1}$ ions in single crystals of KTiOPO_{4} (KTp), synthesized by the fluẍ mèthod, have been in estigàled at room tèmpèraturé by employing a Brukè̈ Q-band spectrometer. From the angular dependence of the EPR patterin fieaeasired in the $a b_{;} b c$, and ca planés, we have identified two Cr^{3+} cenitries, nàmed A añd B , which have beèn proviousily änalyşed by othèr investigâtoórs. In this stuidy; we hàvè neewly identified foùr măgnétically inequivaleñt Ci^{3+} sites for both A and $\overline{\mathrm{B}}$. For the four sites of both $\dot{\mathrm{A}}$ and $\overline{\mathrm{B}}$, the direction cosines of the principal axes of the \bar{g} as weli à the secoñd=order zero-field-siplitting (zrs) teènsorrs are obtained by this relationship, we càlciulated two sêts of all spin-Hamiltonian paräàméters thiat simuiltaneousily fitted four sites for both A and B. İt is allsô vèified that öbserved orieñtatioñs of the principal axès for ali cis ${ }^{3+}$ sités are cönsistent with the crrystallographic symmetry of compensators, or at two different Tì sites, Ti(i) and Til(2), without charge compènsators.

1. Introduction

$\overline{\text { Potassium titanium phosphate }} \overline{\mathrm{K}} \mathrm{TiO}_{\mathrm{P}}^{4}$ (КтР) is a relatively new, efficient, and promising non-liñear óptical material [1]. In particular, KTP is considered as a môst suitable materiàl for frequiéncy doubling of laser radiation beccause of its high non-linear optical coéfficiènt añ high laser-damage threstiold. The crystal structure of KTP is orthorhombic and belongs to the
 coñitãnts for KTP arè $a=12.814, \bar{b} \equiv 6.404$, añd $c \equiv 10.616 \AA$ ât roōm tèmpèrãture. The structure exhibits two crystallographically different Ti sites: $\mathrm{Ti}(1)$ and $\mathrm{Ti}(2)$. Therefore, theere àre four chenically equivalent Ti sités pér uñit cell. Boch sites liè in slightly distórted O octahedra with local site symmetry C_{1}; and exhibit approximately the same bond lengths and angle within the respective TiO_{6} complex.

The Ct^{3+} EPR in KTP has been initiated by Hásanova et al [3]: Gaite et al [4] identified two $\mathrm{Cr}^{3}{ }^{3}$ centres, nâmed A and $\overline{\mathrm{B}}$, which correspond to \bar{I} and $\grave{I}=\overline{\mathrm{VI}}$; respectively; reported by Hasanova et al [3]: İt hás beèn reported that the \mathbf{A} and \bar{B} centres are due to Cr^{3+} ions at the crystallographically equivalent Ti positions; either $\mathrm{Ti}(1)$ or $\mathrm{Ti}(2)$ with different charge compensators. However, there are four magneticālly inequivalent $\bar{T}(1)$ and $\bar{T}(2)$ sites in KTP, ànd the study rèlâted to theese sites hás not been cartied oût yet.

In the piesent work, we have nèwly identified four magnetically inequivalent Cr^{3+} sites för the centres A and B . For four sites of both A and B , the principal values of the g and the second-order zèro-field-splitting (ZFS) tensors, añ the orientations of their principal axes, wère determined. Using the site-rotation matricees obtained by the symmetry relationship among four sites, we calculated two sets of all spin-Hamiltonian parameters
that simultaneously fitted four sites for both A and B . Comparing the orientations of the principal axes with the point group $m m 2$ of KTP , we were able to identify the relative sites of the Cr^{3+} ions. Two possible origins of the A and B centres are also discussed.

2. Experimental procedure

KTP crystals were synthesized by the flux method. The chemical $\mathrm{K}_{6} \mathrm{P}_{4} \mathrm{O}_{13}$ known [5,6] as a particularly suitable flux for growing KTP single crystals, was obtained by the following process [7]:

$$
\begin{equation*}
2 \mathrm{~K}_{2} \mathrm{HPO}_{4}+2 \mathrm{KH}_{2} \mathrm{PO}_{4} \xrightarrow{300 " \mathrm{C}} \mathrm{~K}_{6} \mathrm{P}_{4} \mathrm{O}_{13}+3 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

A sample of $3.0 \times 2.1 \times 1.5 \mathrm{~mm}^{3}$ along the a, b, and c axis, respectively, was cut from the crystal. The Cr^{3+} ions in grown crystals were present as an impurity in the material and identified by comparing EPR results of Gaite et al [4]. EPR measurements of Cr^{3+} centres in KTP have been carried out at room temperature by employing a Bruker Q-band spectrometer (ESP 300 series) with 100 kHz modulation at the Seoul Branch of Korea Basic Science Centre. The microwave frequency was calibrated using the resonance magnetic field of DPPH, where the magnetic field scale at 1.2000 T was calibrated using a Bruker NMR Gaussmeter. These frequencies during the measurements were kept in the range of 0.001 GHz at $33.855,33.996$, and 34.023 GHz in the $a b, b c$, and $c a$ plane, respectively.

Since the angular dependence of Cr^{3+} spectra varied up to $50 \mathrm{mT} / \mathrm{deg}$ and the EPR signals were split by small deviations of the crystal setting from the exact orientation, it was very important to establish a precise crystal orientation in order to study the accurate angular dependence. The crystal oriented by the x-ray Laue method was fixed to its holder, and mounted inside the cylindrical cavity in such a way that each crystallographic plane was perpendicular to the rotation axis of the magnet by adjusting the sample to achieve superposition of appropriately related EPR lines. Reiterating these procedures, we established the crystal orientations within $\pm 0.05^{\circ}$ for all rotation measurements. EPR spectra were recorded by varing the orientations of the external magnetic field in three mutually perpendicular crystallographic planes with θ and ϕ ranging from zero to 180° at 4° intervals, where the polar angle θ and the azimuthal angle ϕ in spherical polar coordinates are measured from the c and the a axis, respectively.

From the angular dependence of the EPR spectra measured in the $a b, b c$, and $c a$ planes, three allowed transitions $\left(\Delta M_{\mathrm{s}}= \pm 1\right)$ between spin states were clearly identified in all crystallographic planes: $[3 / 2\rangle \leftrightarrow|1 / 2\rangle,|1 / 2\rangle \leftrightarrow|-1 / 2\rangle$ and $|-1 / 2\rangle \leftrightarrow|-3 / 2\rangle$. We also found two forbidden transitions $\left(\Delta M_{s}= \pm 2\right):|3 / 2\rangle \leftrightarrow|-1 / 2\rangle$ and $|1 / 2\rangle \leftrightarrow|-3 / 2\rangle$. For any arbitrary orientation of the magnetic field with respect to the crystallographic axes, eight sets of fine structures were observed. The eight sets can be divided into two groups denoted as A and B , which are related to symmetries of the Cr^{3+} ion sites. Each group contains four sets of fine structures, which arise from chemically equivalent but magnetically inequivalent Cr^{3+} ion sites. However, when the magnetic field was aligned along one of the three crystallographic planes, two sets of fine structures were recorded. These sets merged into only one when the magnetic field was oriented along a crystallographic axis.

3. Results and discussion

EPR spectra of $\mathrm{Cr}^{3+}(S=3 / 2)$ are described by the general spin Hamiltonian up to second order as previously reported [4] for which no particular symmetry of the spin Hamiltonian is expected:

$$
\begin{equation*}
H=\sum_{i j} \mu_{\mathrm{B}} B_{i} g_{i j} S_{j}+\sum_{m=-2}^{2} B_{2}^{m} O_{2}^{m} \tag{2}
\end{equation*}
$$

where μ_{B} is the Bohr magneton, $g_{i j}(i, j=X, Y, Z)$ the component of the g tensor and O_{n}^{m} the extended Stevens operators. From the angular dependence of EPR spectra measured in the $a b, b c$, and $c a$ planes, respectively, we have identified two Cr^{3+} centres, which are equivalent to the A and B centres previously reported by Gaite et al [4]. We also have newly identified four magnetically different Cr^{3+} sites for both A and B , which arise from the symmetry of the point group $m m 2$ of KTP. These new sites have been named SA1, SA2, SA3, and SA4 belonging to centre A, and SB1, SB2, SB3, and SB4 belonging to centre B.

For all Cr^{3+} sites, the 11 parameters of equation (1) are calculated by employing a computer program. In order to compare the results from the ERR program with other experimental data [4], the $D_{i j}$ values are converted to the Stevens operator notation [8] using the relations [9]. For four sites belonging to each centre, the direction cosines of the principal axes of the \mathbf{g} as well as the second-order ZFS tensors are found to be given by the relationship $l m n, \bar{l} m n, l \bar{m} n$, and $l m \bar{n}$. The site-rotation matrices, which transform all symmetry-related sites into a reference site, could be found by this relationship. Using this matrix set for each centre, we calculated two sets of the general spin-Hamiltonian parameters that simultaneously fitted the data of four sites for both A and B. The values of $g_{i j}$ and of the second-order ZFS parameters for the sites SA1 and SB1 are listed in table 1. These parameters are given in the crystallographic axis system defined as $X=a, Y=b$, and $Z=c$. The standard deviations between the experimental and calculated magnetic transitions are 1.3 mT and 1.5 mT for A and B , respectively.

Table 1. Cr^{3+} spin-Hamiltonian parameters of the sites SA 1 and SB 1 belonging to the centres A and B respectively in the X, Y, Z crystallographic axis system. The estimated statistical uncertainties in the last significant figures are represented in parentheses.

ij	A (site SA1)	B (site SB1)
	Matrix components $g_{i j}$	
$X X$	$1.96379(15)$	$1.97261(16)$
$Y Y$	1.975 52(18)	1.967 49(17)
ZZ	1.971 43(19)	$1.97261(17)$
$X Y$	$0.00063(19)$	$-0.00066(17)$
$X Z$	-0.00068(17)	$-0.00156(18)$
$Y Z$	-0.00093(23)	$0.00073(17)$
m	Second-order zFS parameters $B_{2}^{m}\left(\mathrm{~cm}^{-1}\right)$	
0	-0.11660(3)	-0.085 77 (2)
1	0,00585(11)	$0.21558(9)$
-1	-0.13399(1)	-0.08525(9)
2	$0.21050(4)$	$-0.17181(3)$
-2	$-0.05781(5)$	0.071 48(4)

Table 2. Principal yalues of the g tensors and orientations of their principal axes $x^{\prime}, y^{\prime}, z^{\prime}$ with respect to the X, \underline{Y}, Z crystallographic axis system for Cr^{3+} sites belonging to the centres A and B.

Components				B
	Principal values of g tensors ${ }^{2}$			
${ }_{6} x^{\text {d }}$	$1.97577(18)$		1.974 10(21)	
$8 y^{\prime}$	1.97126 (21)		$1.97082(20)$	
$g_{z^{\prime}}$	$1.96371(15)$		$1.96735(17)$	
	Orrientations (${ }^{\circ}$) of the principal values ${ }^{\text {n/b }}$			
	θ	ϕ	θ	ϕ
	SAI		SB1	
Ox'	$102.72 .7)$	86.3(0.9)	$130.7(2.1)$	-11,1(1.9)
Oy	$13.5(2.6)$	107.4(6.5)	138.5 (2.2)	$=177.1(4.1)$
Oq'	94.7(1.3)	$177.3(0.9)$	83.0(2.3)	-95.1(2,2)
	SAR2		SB2	
Ox ${ }^{\text {d }}$	102.7	93.8	49.3	11.1
O. y^{\prime}	166.5	$=107.4$	138.5	-2.9
Oz'	85.3	$=177.3$	83.0	-84.9
	SA3		SB3	
Ox'	77.4	93.8	130,	11,1
$\mathrm{O} y^{\prime}$	166.5	72.6	138.5	177.1
O^{\prime}	94.7	$=177.3$	97.0	$=84.9$
	SA4		SB4	
$0 x^{\prime}$	77,4	86.3	49.3	$=11.1$
$0 y^{\prime}$	166.5	107.4	138,5	2.9
$0 z^{\prime}$	94.7	-2.7	97.0	-995.1

[^0]For eight sites, the principal values of the g tensors and the orientations of their principal axes $x^{\prime}, y^{\prime}, z^{\prime}$ with respect to the crystallographic axis system are summarized in table 2 , where the axes $x^{\prime}, y^{\prime}, z^{\prime}$ are taken in the order of their magnitudes: $g_{x^{\prime}}>g_{y^{\prime}} \geqslant g_{z^{\prime}}$. The principal values of the second-order ZFS tensors, and the orientations of their principal axes x, y, z with respect to the crystallographic axis system, are listed in table 3 together with the values reported by Gaite et al [4] for comparison. We chose the principal axes to follow the general rule $\left|B_{2}^{0}\right| \geqslant\left|B_{2}^{2}\right|$ and two parameters having the same sign. Four Cr^{3+} sites corresponding to each of A and B have identical principal values of the g and the secondorder ZFS tensors within the experimental uncertainty, but different orientations of their principal axes, respectively. The site SA 3 (SB4) corresponds directly to the centre A (B) reported by Gaite et al [4], where the orientation of their principal axis Oz of the secondorder ZFS tensors is perpendicular to the $x y$ plane that is made up of the other principal axes, but is in the left-handed instead of the right-handed coordinate system x, y, z :

In order to demonstrate the confidence of the determined parameters, the calculated

Table 3. Principal values of the second-orçer zrs tensors and orientations of their principal axes x, y, z with respect to the X, Y, Z crystallographic axis system for $C^{3+} \dagger$ sites corresponding to the centres A and B. The data of Gaite ef al [4] are included for comparison.

	Present work			
				B
	Principal values of the second-order zFs tensorsil			
$\begin{aligned} & B_{2}^{0}\left(\mathrm{~cm}^{-1}\right) \\ & B_{2}^{2}\left(\mathrm{~cm}^{-1}\right) \end{aligned}$	0.16	57(3)		$13645(3)$
	0.09	24(2)		11949 (3)
	Orientations (${ }^{c}$) of the principal axes of the second-order ZFs tensors ${ }^{\text {b }}$			
	θ	ϕ	θ	ϕ
	SAI			SB1
$0 x$	112.52	81.63	53.88	-8.30
$0 y$	157.45	-94.93	143,72	$=14.36$
Oz	91. 22	172.14	92.89	79:59
	SA2			SB2
$0 x$	112.52	98.37	126.12	8.30
Oy	157.45	$=85.07$	143,72	-165.64
$\mathrm{O} z$	88.78	-172.14	9289	100.41
	SA3		SB3	
Ox	67.48	98.37	53.88	8.30
Oy ${ }^{\text {¢ }}$	157.45	94,93	36.28	$=165.64$
Oz	91.21	-172.14	92.89	=79.59
	SA4		SB4	
$\mathrm{O} x$	67.48	81.63	126.12	- 8 8,30
$0 y$	157.45	85,07	36.28	$=14.36$
Oz	88,78	172.14	92:89	-100.41
	Gaite et al			
	A			B
$B_{2}^{0}\left(\mathrm{~cm}^{-1}\right)$	0.1686			0.1373
$B_{2}^{2}\left(\mathrm{~cm}^{-1}\right)$	0.0939			0.1197
$\mathrm{O}^{\prime \prime}$	67.5	98.4	126.1	-8.3
Oy	157.4	94,9	36.3	$=14.4$
Oz	88.8	7.9	87.1	79.5

${ }^{2}$ The numbers in parenteneses represent the estimated statistical uncertainties in the last significant figures.
The ranges of θ and ϕ are restricted to $0 \leqslant \theta<\pi$ and $-\pi \leqslant \phi \leqslant \pi$, respectively, where the estimated maximum uncertainties in the angle are $\pm 0.01^{\circ}$ for all sites.
rotation patterns of the centres A and B in the $a b, b c$ and $c a$ planes are displayed in figure 1 together with experimental data. Four Cr^{3+} sites for each centre are differently degenerated into two pairs in three crystallographic planes, respectively. The degenerated pairs are as follows, The SA1 (SB1) and SA4 (SB4), indicated by closed circles, and

Figure 1. The angular dependence of the Cr^{3+} spectra in KTP in the $a b, b c$, and $c a$ planes, at $33.885,33.996$, and $34.023 \pm 0.001 \mathrm{GHz}$, respectively: (a) for the A centre; (b) for the B centre. The experimental points are represented by closed circles and triangles, and calculations by full lines for the allowed transitions and by dotted lines for the forbidden transitions.

SA2 (SB2) and SA3 (SB3), by closed triangles, are degenerated respectively into one in the $a b$ plane. The SA1 (SB1) and SA2 (SB2) indicated by closed circles and SA3 (SB3) and SA4 (SB4) by closed triangles in the bc plane, and the SA1 (SB1) and SA3 (SB3) by closed circles and SA2 (SB2) and SA4 (SB4) by closed triangles in the ca plane, are each degenerated into one. The non-degenerated pair has a mirror symmetry to each other about the a, b, and c axis in each crystallographic plane.

Figure 2. The symmetry relationship among four crystallographically equivalent Ti^{4+*} positions in KTP.

The point-symmetry relationship among the Ti^{4+} positions in KTP is described in figure 2 . When the magnetic field is aligned along one of the three crystallographic planes, the distinction of lattice translations as part of the symmetry operations in the space group $P n a 2_{1}$ can be ignored; i.e. the twofold screw axis c can be considered as a twofold rotation axis, and glide planes a and n as mirror planes. Therefore, if the magnetic field is aligned along the a, b, and c axis, then the resonance field will be identical for all Ti^{4+} positions. When the magnetic field is along the $a b$ plane, the resonance fields are identical for I and IV, and II and III positions, respectively. The resonance fields are respectively identical for I and II, and III and IV in the $b c$ plane, likewise I and III, and II and IV in the $c a$ plane, respectively. Therefore, the sites SA1, SA2, SA3, and SA4 belonging to the A centre correspond to I, II, III, and IV positions, respectively. In the same way, the SB1, SB2, SB3, and SB4 sites belonging to centre B can be correlated with the other set of four Ti^{4+} positions that have the relationship shown in figure 2.

It is possible to partially substitute for the Ti^{4+} ion in TiO_{6} octahedra by a Cr^{3+} ion of similar ionic radius, but with a monovalent charge compensator. Therefore, there are two possible origins of the centres A and B : each centre may be due to Cr^{3+} ions at the crystallographically equivalent Ti sites, either $\mathrm{Ti}(1)$ or $\mathrm{Ti}(2)$ with different charge compensators, or at two different Ti sites, $\mathrm{Ti}(1)$ and $\mathrm{Ti}(2)$ without charge compensators.

Acknowledgments

This work was supported by the Korea Science and Engineering Foundations through the Science Research Centre of Exellence Program (1994-1997). The computer program 'EPR
version 4.4^{\prime} (D G McGavin, M Y Mombourquette and J A Weil, Department of Chemistry, University of Saskatchewan, Canada) was employed.

References

[1] Zumsteg F C, Bierlein J D and Gier T E 1976 J. Appl. Phys. 474980
[2] Tordjman I, Masse R and Guitel J C 1974 Z Kristallogr. 139103
[3] Hasanova N M, Nizamutdinov N M, Izugzon A S, Bulka G R, Vinokurov V M, Pavlova N I and Rez IS 1988 Physics of Minerals and Synthetic Crystals (in Russian) (Kazanskogo University Press) $p 87$
[4] Gaite J M, Stenger J F, Dusausoy Y, Marnier G and Rager H 1991 J. Phys.: Condens. Matter 37877
[5] Bordui P F, Jacco J C, Loiacono G M, Stolzenberger R A and Zola J J 1987 J. Cryst. Growth 84403
[6] Bolt R J, De Hass H, Sebastian M T and Klapper H 1991 J. Cryst. Growth 110587
[7] Choi B C, Kim J B, Yun S I and Kim J N 1993 Korean Appl. Phys. 627
[8] Rudowicz C 1987 Magn. Res. Rev. 13 I
[9] McGavin D G 1987 J. Magn, Res. 7419

[^0]: a The estimated statistical uncertainties in the last significant figures are represented in parentheses.
 b The ranges of θ and ϕ are restricted to $0 \leqslant \theta<\pi$ and $=\pi \leqslant \phi<\pi$, respectively.

